Comment on: On the Kung-Traub Conjecture for Iterative Methods for Solving Quadratic Equations. Algorithms 2016, 9, 1

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comment on: On the Kung-Traub Conjecture for Iterative Methods for Solving Quadratic Equations. Algorithms 2016, 9, 1

Kung-Traub conjecture states that an iterative method without memory for finding the simple zero of a scalar equation could achieve convergence order 2d−1, and d is the total number of function evaluations. In an article “Babajee, D.K.R. On the Kung-Traub Conjecture for Iterative Methods for Solving Quadratic Equations, Algorithms 2016, 9, 1, doi:10.3390/a9010001”, the author has shown that Kun...

متن کامل

On the Kung-Traub Conjecture for Iterative Methods for Solving Quadratic Equations

Kung-Traub’s conjecture states that an optimal iterative method based on d function evaluations for finding a simple zero of a nonlinear function could achieve a maximum convergence order of 2d−1. During the last years, many attempts have been made to prove this conjecture or develop optimal methods which satisfy the conjecture. We understand from the conjecture that the maximum order reached b...

متن کامل

On some multipoint methods arising from optimal in the sense of Kung–Traub algorithms

In this paper we will examine self-accelerating in terms of convergence speed and the corresponding index of efficiency in the sense of Ostrowski–Traub of certain standard and most commonly used in practice multipoint iterative methods using several initial approximations for numerical solution of nonlinear equations due to optimal in the sense of the Kung–Traub algorithm of order 4, 8 and 16. ...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

On a few Iterative Methods for Solving Nonlinear Equations

In this study an unpopular method of quadrature formulas for receiving iterative methods for solving nonlinear equations is applied. It is proved for the presented iterative methods that the order of convergence is equal to two or three. The executed comparative numerical experiments show the efficiency of the presented methods.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithms

سال: 2016

ISSN: 1999-4893

DOI: 10.3390/a9020030