Comment on: On the Kung-Traub Conjecture for Iterative Methods for Solving Quadratic Equations. Algorithms 2016, 9, 1
نویسندگان
چکیده
منابع مشابه
Comment on: On the Kung-Traub Conjecture for Iterative Methods for Solving Quadratic Equations. Algorithms 2016, 9, 1
Kung-Traub conjecture states that an iterative method without memory for finding the simple zero of a scalar equation could achieve convergence order 2d−1, and d is the total number of function evaluations. In an article “Babajee, D.K.R. On the Kung-Traub Conjecture for Iterative Methods for Solving Quadratic Equations, Algorithms 2016, 9, 1, doi:10.3390/a9010001”, the author has shown that Kun...
متن کاملOn the Kung-Traub Conjecture for Iterative Methods for Solving Quadratic Equations
Kung-Traub’s conjecture states that an optimal iterative method based on d function evaluations for finding a simple zero of a nonlinear function could achieve a maximum convergence order of 2d−1. During the last years, many attempts have been made to prove this conjecture or develop optimal methods which satisfy the conjecture. We understand from the conjecture that the maximum order reached b...
متن کاملOn some multipoint methods arising from optimal in the sense of Kung–Traub algorithms
In this paper we will examine self-accelerating in terms of convergence speed and the corresponding index of efficiency in the sense of Ostrowski–Traub of certain standard and most commonly used in practice multipoint iterative methods using several initial approximations for numerical solution of nonlinear equations due to optimal in the sense of the Kung–Traub algorithm of order 4, 8 and 16. ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولOn a few Iterative Methods for Solving Nonlinear Equations
In this study an unpopular method of quadrature formulas for receiving iterative methods for solving nonlinear equations is applied. It is proved for the presented iterative methods that the order of convergence is equal to two or three. The executed comparative numerical experiments show the efficiency of the presented methods.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algorithms
سال: 2016
ISSN: 1999-4893
DOI: 10.3390/a9020030